Code No.: 16437 AS

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.C.E.) VI-Semester Advanced Supplementary Examinations, August-2022 Digital Signal Processing

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

	$Part-A (10 \times 2 = 20 Marks)$				
Q. No.	Stem of the question	M	L	CO	PO
1.	State the complex conjugate property of DFT?	2	1	1	1
2.	What is an in-place computation in the FFT algorithm?	2	1	1	2
3.	Explain Gibb's phenomenon? How it can be overcome?	2	2	2	2
4.	List the desirable characteristics of the windows used in FIR filter design.	2	1	2	2
5.	Determine the digital filter transfer function from the analog filter impulse response $h_a(t)=e^{-2t}$ using impulse invariant method. Assume the sampling frequency is 1Hz.	2	3	3	2
6.	What are the advantages of the Chebyshev filter over the Butterworth filter?	2	1	3	1
7.	Design a multi-rate system to change the 5 KHz sampling rate into a 2 KHz sampling rate?	2	4	4	3
8.	List the advantages of the multistage approach over single stage approach in sampling rate conversion	2	2	4	2
9.	Write any two instructions that are performed by .M functional unit in the TMS320C67XX processor?	2	4	5	5
10.	What is VLIW architecture? Briefly explain the same.	2	1	5	2
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	Compute the 4-point DFT of the sequence $x(n) = \{1, 2, 1, 2\}$ using DITFFT algorithm?	4	3	1	2
b)	Find out the linear convolution of two sequences $x(n) = \{1,2,3\}$ and $h(n) = \{1,2,1\}$ using circular convolution.	4	3	1	2
12.	Design an FIR HPF with the frequency response is	8	4	2	3
	$H(e^{jw}) = \begin{cases} 1 & \frac{\pi}{3} \le w \le \pi \\ 0 & otherwise \end{cases}$				
	using the hamming window for N=7.				

13.	Design a Digital Butterworth LPF to meet the following specifications	8	4	3	3
	Pass band frequency: 200 Hz				
	Stop band frequency: 1000 Hz				
	Pass band attenuation $\leq 3dB$				
	Stop band attenuation $\geq 20dB$				
	Sampling frequency: 4000 Hz using the bilinear transformation.				
(4. a)	Let $x(n) = \{1,3,2,5,-1,-2,2,3,2,1\}$, find	4	2	4	2
	i) up sample by 2 times and downsample by 4 times	e ship			
2	ii) downsample by 4 times and upsample by 2 times	a sile			
	iii) justify why these outputs are not equal				
b)	Explain the sub-band coding of a speech signal	4	2	4	2
15. a)	Explain the architectural features of the TMS320C67XX processor?	4	2	5	5
by	Explain circular addressing in the TMS320C67XX processor with an example?	4	2	5	5
16. a)	Define zero padding? What is the importance of zero padding in DFT with an example?	2	1	1	2
b)	Derive the magnitude response of an FIR filter for impulse response is symmetric and the length of the filter N is odd.	6	4	1	2
17.	Answer any two of the following:				
a)	Compare FIR and IIR filters	4	2	3	2
b)	State and prove any two identities used in multirate signal processing.	4	3	4	2
et	Distinguish between DSP processor and General purpose processor	4	1	5	2

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	30%
iii)	Blooms Taxonomy Level – 3 & 4	50%
